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Abstract

Analysis and results for in-plane non-linear antisymmetric responses of a cable, supported at the same
level, through bifurcation under in-plane symmetric sinusoidally time-varying load are presented. The non-
linear equation of the in-plane motion of the cable is solved by a Galerkin method and the harmonic
balance method. From the computed results the frequency range, where the antisymmetric response occurs,
varies with the sag-to-span ratio of the cable and is broad in the particular sag-to-span ratios. The second
unstable region is important compared with the principal unstable region. Strong coupling between
symmetric and antisymmetric modes is observed in the unstable regions for the particular sag-to-span
ratios.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Non-linear vibrations of sagged cables have been treated by many authors as the dynamic
properties of the cable could only be established by considering large deflections. Recently, non-
linear vibrations of the sagged cables have been reported by many authors (see references of
papers [1,2], and new references [3—7]). Out-of-plane responses bifurcate under in-plane forcing in
the particular frequency range [2] and there is a strong interaction between the in-plane and out-
plane vibrations.

It was observed in a wind tunnel test that the mode of vibration of a transmission cable is either
symmetric or antisymmetric dependent upon wind velocity [8]. This phenomenon is assumed to
arise from the dynamic stability of the cable as well as self-excited force. A similar problem was
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observed in beam vibration. The antisymmetric responses of the straight beam under symmetric
sinusoidally time-varying load are reported by Bennett and Eisley [9] and Takahashi [10]. Since
the cable has sag [1,11], the quadratic and cubic non-linear terms are simultaneously included in
the equation of motion of the cable. It is expected that the antisymmetric response of a cable is
more important than that of a straight beam.

The present work considers in-plane non-linear antisymmetric responses of horizontal cables
under an in-plane symmetric sinusoidally time-varying load. The method of solution is roughly
the same as that in [1,2]. The various possible types of solution are obtained with techniques of the
non-linear oscillation theory. The non-linear equation of in-plane motion is solved by a Galerkin
method in space co-ordinates. The frequency range where the antisymmetric responses exist is
obtained and presented for various sag-to-span ratios by the linear theory of the antisymmetric
responses. Coupling between symmetric and antisymmetric modes having periodic solutions at the
unstable boundaries is obtained by the harmonic balance method. Those having non-periodic
solutions within unstable regions are obtained by using the Runge—Kutta—Gill method.

2. Method of solution

A horizontal cable with uniform cross-section hanging between two fixed points, as shown in
Fig. 1, is considered. If the profile is flat, so that the sag-to-span ratio is 1:8 or less, the equations
of motion of the non-linear vibrations of a cable subjected to in-plane vertical symmetric time-
varying load are obtained as follows [11]:
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where w is the vertical displacement, x is the span-wise co-ordinate , ¢ is time, H is the horizontal
component of the cable tension, AH is the deflection-induced additional tension, 71 is the mass per
unit length of the cable, ¢ is the acceleration due to gravity, E is the modulus of elasticity of the
cable, A is the cross-sectional area, Ly = L{1 + 8(f/ L)z} is the length of the cable, L is the span of
the cable, f is the sag of the cable, Q is the radian frequency of the vertical load, and py is the
uniformly distributed vertical load intensity.

If we assume the present problem to be a two-degree-of-freedom dynamic system, which is
composed of the symmetric mode and the antisymmetric mode, a normal mode of solution is
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Fig. 1. Geometry of a cable.
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assumed as [1]
2
W) =LY PloWi%), 3)
=1

where P;(t) is a known function of time which is a generalized co-ordinate of response, Wi(X) is
the space co-ordinate function satisfying the associated linear problem (W is zero at both ends),
and as obtained by linear free vibration analysis is given by [11]

Wi x=1- tan% sin W1 TX — COS D] X,
WH(X) = sin (@7X). 4)

Here ¥ = x/L is the non-dimensional co-ordinate in the x direction, T = wot is the non-
dimensional time, wy = [(H /m)(% /L)2]1/ 2 is the first natural circular frequency of the taut string
which has no sag, @; = w;/wy is the non-dimensional natural circular frequency, @, = 2 is the
non-dimensional natural circular frequency of the antisymmetric mode and @; is the non-
dimensional natural circular frequency of the symmetric mode obtained by the following
equation:

- - -\ 3
W W 4 W
t: — _ 5
an— > /12< > ) , (5)
where 2% = 64k%)%/(1 + 8?) is the Irvine parameter [11], k> = EA/H is the ratio of elongation
stiffness to horizontal tension of the cable and y = f//L is the sag-to-span ratio of the cable.

Applying a Galerkin method to Egs. (1) and (2), one has the following ordinary differential
equations for the time variables:

Pi(7) + a1 Py +b1P% + clPﬁ +d1P% + €1P1P§ = f1p cos @, (6)

Py(t) + @y Py + (byPy + 2 PT + o P3) P, = 0, (7)

where a;—f1 and a,—d, are coefficients dependent on the modal shapes of the linear problem (see
Appendix A) and p = py/myg.

3. Classifications of solutions

Eq. (7) is a homogeneous equation satisfied by P, = 0. Then, Eq. (6) reduces to just the function
P;. The non-linear symmetric response of the accompanying type (P), that is, the non-linear
symmetric response subjected to the symmetric sinusiodally time-varying load can be obtained by
using the following equation:

Pi(t) + a1 Py + b1 P} + d\ P} = fip cos iir. (8)

On the other hand, since the symmetric time function P; is included as coefficients in Eq. (7) as
can be seen in Eq.(7), the antisymmetric time function of P, may be obtained through
bifurcation. The non-linear symmetric response occurs near @ = @; and the non-linear
antisymmetric response through bifurcation occurs near the second unstable region @ = @; and
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Fig. 2. Classifications of the solution and its approach.

the principal unstable region 2@,. If non-linear quadratic and cubic terms P3 and P3 are neglected,
a parametric antisymmetric response can be obtained by using the theory of dynamic stability to
identify the unstable regions [10]. A symmetric response can be obtained independently by using
Eq. (8). Non-linear quadratic and cubic terms, P3 and P3, cannot be neglected in the case of large
amplitude vibrations; coupling non-linear responses between Pjand P, are obtained from Egs. (6)
and (7). Coupling non-linear responses near bifurcation points should be obtained by using the
harmonic balance method and those within the unstable regions can be obtained by a time
response analysis. From these considerations, classification of the solution to this problem is
shown in Fig. 2.

3.1. Unstable regions of parametric vibration

If we obtain a solution in the neighborhood of the bifurcation point, the non-linear term as to
P3 can be neglected. Then, Egs. (6) and (7) can be rewritten as follows:

Pl + a1 P, —|—b1P% —|—d1P? :flpCOS T, )

pz—f—asz—i—(bzPl +C2P%)P2:0. (10)
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Eq. (9) is a function of P; only and then can be solved independently when P; is assumed as
=1C} + Cf cos ar, (11)

where C} and C| are amplitude components.
By using these amplitude components of the symmetric responses C} and C| obtained from
Eq. (9), Eq. (10) is reduced to the Hill equation as

Pz + ay Py + (D) + Dy cos dt + D3 cos 2at)Py = 0, (12)

where Dy = a> +16,C) +1exCYCl + 1 2 CI C), Dy = b,Cl + .CL C}, D3 =1, Cl Y.
The solution of Eq. (12) is assumed as follows [10]:

P,=¢ { —Po + Z o, sin(ndt) + f, cos(nwr)} (13)

where A is an unknown constant, and f, f§, and o, are unknown coefficients.
Substituting Eq. (13) into Eq. (12), a homogeneous equation to seek for A is obtained. The
stability of this equation is evaluated by using the method shown in Ref. [10].

3.2. Non-linear coupling responses on the unstable boundary

Non-linear antisymmetric response occurs near the frequency & = 2@, = 2.0 (boundaries of the
principal unstable region with period 27 = 4n/®;) and & = @, = 2.0 (boundaries of the second
unstable region with period 27/@;). From the above consideration, a solution of Egs. (6) and (7)
is assumed as

= lCé + C| cos ar, (14)

lC0+Cl/zcos —|—Sl/2sm +Cl cos @t + S7 sin @, (15)

2 2

where Cé, C12 /2> Sf 9 C12 and Sf are the amplitude components of the antisymmetric time function.

Substituting Egs. (14) and (15) into Egs. (6) and (7) and applying the harmonic balance method
yield a set of non-linear algebraic relations for determining the unknown constants. The non-
linear equations may be solved by the Newton—Raphson method with the use of a proper initial
guess.

In the practical numerical calculation, putting the amplitude components (C3 ~ S?) at zero and
obtaining the symmetric components, C} and C}, the frequency-response curve of the symmetric
vibration can be obtained. Then amplitude components of the antisymmetric responses near
@& = 2@, and @ = @, are obtained by assuming non-zero initial values of the amplitude
components.

3.3. Non-linear coupling response within unstable regions

It is impossible to obtain a solution to Egs. (6) and (7) within an unstable region. Time variables
P; and P, can be numerically integrated. The Runge-Kutta—Gill method is used in the present
analysis to determine the amplitudes of unstable motions. The initial conditions for the time
variable P, are P;(0) = a steady state response under a symmetric load, P;(0)=0.0. The initial
condition for the time variable P, are P»(0) = 0.0 and P1(0)=0.001.
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4. Basic properties of coupling response

The natural frequency @; of the symmetric mode and the natural frequency @, of the
antisymmetric mode of a cable with k = 30 are shown in Fig. 3. The antisymmetric mode is not
affected by the sag-to-span ratio y (&, = 2.0). On the other hand, the effect of the sag-to-span ratio is
considerable on the symmetric mode; that is, a modal crossover occurs from the first symmetric mode
to the next one in the particular sag-to-span ratio and the frequency increases (o; = 1.0—3.0) [11].
From this fact, the two natural frequencies have the following relations: @; <@, (y<0.026), @ ~ @
(y=~0.026) and @; > @, (y > 0.026). The exciting force from the symmetric vibration P; to the
antisymmetric vibration P, depends on the exciting terms, b, P; and ¢, P?, in Eq. (7). The feedback
terms to the symmetric vibration from the antisymmetric vibration are ¢; P5 and e, P3P, in Eq. (6).

The coefficients, ¢; and e, are shown as a function of y in Figs. 4 and 5. These coefficients, ¢,
and e, change with an increase of y. They are small when y is very small and the effect of the
antisymmetric vibration on the symmetric vibration is small. The coefficient ¢; increases with an
increase of sag-to-span ratio y, and approaches a maximum value near y = 0.04. Then it decreases
for greater sag-to-span ratio. The coefficient ¢; is large where the modal crossover is produced.
The coefficient e; increases near y = 0.04 and becomes a maximum near y = 0.06.

The parametric exciting coefficients b, and ¢, are shown in Figs. 6 and 7 as functions of the sag-
to-span ratio y with results similar to ¢; and e;. These parametric exciting and feedback
coefficients of cables are greater than those of a string whose sag-to-span ratio is small. It is
assumed that the strong coupling between the symmetric and the antisymmetric modes under a
symmetric sinusoidally time-varying load appears in the cable vibration.

5. Numerical results

5.1. Symmetric and antisymmetric non-linear response curves

The non-linear symmetric responses and corresponding antisymmetric responses are presented
for cables with k = 30. The non-linear symmetric response occurs near the frequency range

4
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Fig. 3. Relation between the first symmetric frequency @, and the first antisymmetric frequency @,.
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Fig. 4. Relation between feedback term ¢; and sag-to-span ratio y.

10°

10° . .
0.001 0.010 0.100
Sag—to—span ratio y

Fig. 5. Relation between feedback term e; and sag-to-span ratio 7.
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Fig. 6. Relation between parametric exciting term b, and sag-to-span ratio 7.
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Fig. 7. Relation between parametric exciting term ¢, and sag-to-span ratio y.
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Fig. 8. Symmetric and antisymmetric non-linear responses of a cable with y = 0.020 and 5 = 0.132.

@& = @1, while the antisymmetric response occurs near @ = @, and 2@;. There are three different
types of symmetric and antisymmetric responses at the unstable boundary as shown in Figs. 8—
10.The sag-to-span ratios of these figures are y =0. 02 (&, > @), y =0. 022 (@, ~@;) and y =0.07
(@, <@1). The load intensity for each case is adjusted so as to give the same static response, 0.001,
when @ = 0. In these figures, the ordinate indicates the amplitude components (i.c.,
Cl, 83, C1, 87 12 Clz/z). The amplitude of the symmetric response (C}) is defined by that of the
center of the cable, while the amplitude of the antisymmetric response is defined by that of the
quarter point of the cable.

In these figures, the thicker solid lines and dotted lines correspond to the in-phase and out-of-
phase symmetric responses, respectively. These symmetric responses exist in the entire frequency
range. Symmetric non-linear responses show a softening spring or a hardening spring depending
upon the sag-to-span ratio as shown in Figs. 8-10. On the other hand, the thinner dotted lines
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Fig. 10. Symmetric and antisymmetric non-linear responses of a cable with y = 0.070 and 5 = 0.609.

near @ = 2@, and @, correspond to the antisymmetric responses at the unstable boundary
through bifurcation. The relation between amplitude and frequency of the antisymmetric response
curve shows a tendency of the weakly hardening spring independent of the sag-to-span ratio. The
amplitude of the symmetric response after the bifurcation is different from that of the symmetric
response without the antisymmetric response. The phase angle of the antisymmetric response is
either in-phase or out-of-phase and its absolute value is the same.

The antisymmetric responses of the principal and second unstable regions occur from the out-
of-phase symmetric response of a cable with a sag-to-span ratio y = 0.02, because @, is greater
than @; as shown in Fig. 8. The second unstable motion occurs from the in-phase symmetric
response of a cable with a sag-to-span ratio y = 0.07 because @, is less than @; as shown in
Fig. 10. Contrary to these, in the case of a cable with y = 0.022, the bifurcation point of the
second unstable motion near @& = 2.0 coincides with the natural frequency @, of the symmetric
response. Therefore, bifurcation responses ST and C} occur from the in-phase and out-of-phase
responses of the symmetric vibration, respectively. As the symmetric non-linear response of the
cable with y = 0.022 shows a softening spring, the symmetric response has a vertical tangent as
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Fig. 11. Principal unstable region of the antisymmetric response of a cable with y = 0.026.

shown in Fig. 9. The shaded side of the in-phase response curve is unstable and its amplitude in
this range cannot be realized. Therefore, the antisymmetric response which bifurcates from the
symmetric response C| does not exist. In the present case, the frequency range where the
antisymmetric response occurs is defined by the vertical tangent of the out-of-phase symmetric
response.

The principal unstable response occurs in the frequency range of 2@, and the frequency 2@, is
greater than @; independent of the sag-to-span ratio y. The principal unstable response always
occurs from the out-of-phase symmetric response.

The principal unstable region near 2@, of the cable with y = 0.026 is shown in Fig. 11 for
various load intensities. The result is obtained by linear analysis as shown in Section 3.1. The
shaded area is the unstable region where the antisymmetric response diverges. The boundary
curves separating the stable regions from the unstable regions have periodic solutions with a
period 2 T. These boundaries coincide with bifurcation points obtained by the non-linear analysis
as shown in Section 3.2. The width of the unstable region grows wider as the load intensity
increases as shown in Fig. 11.

5.2. Principal and second unstable regions

Figs. 12 and 13 show frequency ranges of the principal and second unstable regions of a cable
(k = 30) as functions of the sag-to-span ratio y by adjusting load intensity to give the same static
response. The load intensity p is the triple times used in Figs. 8-10.

The principal unstable region is obviously wider in the range of the sag-to-span ratio y > 0.01
than the other sag-to-span ratios. Therefore, the antisymmetric response with a period 2 T occurs
for cables with y > 0.01.

The second unstable region near @ = @, is discontinuous where the sag-to-span ratio y =
0.02~0.03. It is interesting as it is an uncommon result that the second unstable region is wider
than the principal unstable region.

These unstable regions of the antisymmetric response are characteristic of the cable. Their
extension is narrow when the sag-to-span ratio is small and the antisymmetric response cannot
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Fig. 13. Second unstable region of the antisymmetric mode.

appear when damping is considered. From these results, a non-linear antisymmetric response
occurs in the particular frequency range under symmetric forcing in the case of a horizontal
cable.

5.3. Non-linear coupling in unstable regions

Figs. 14 and 15 show time histories of the principal and second unstable regions (& = 3.97 and
2.00) of a cable with y = 0.03. A strong non-linear coupling between symmetric and antisymmetric
modes can be seen in the time histories. The antisymmetric response influences the symmetric
response. Amplitudes of coupling in the second unstable region are greater than those in the
principal unstable regions.
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Fig. 14. Time history of a cable within the principal unstable region: y = 0.03, 5 = 0.444 and @ = 3.97.

From these considerations, it is concluded that coupling between the symmetric and
antisymmetric modes is observed in a cable under a symmetric load.

6. Conclusions

In the present paper, the non-linear antisymmetric response of a symmetrically supported cable
at the same level is presented. Conclusions are as follows:

(1) The antisymmetric response of a cable occurs through bifurcation. The frequency range
where the antisymmetric response occurs depends on the sag-to-span ratio of the cable. The
uncommon result that the width of the second unstable region is greater than that of the principal
unstable region occurs in the cable vibration.
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Fig. 15. Time history of a cable within the second unstable region: y = 0.03, 5 = 0.444 and & = 2.00.

(2) Strong coupling between symmetric and antisymmetric responses is observed within the
unstable regions at the sag-to-span ratios studied.

Appendix A. Coefficients of Eqgs. (6) and (7)

1 1 22 11/ 2 2
=—<{—B + = KK by =——---=KB — ==K B!
ai Ml{ 2 1+n2 1 1}, 1 Mw( g2 M1 = 1>,
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where
1 1 1
M, :/ Wi(x) dx, M2:/ sin’(2rx)dx =1, K :/ Wi(x) dx,
0 0 0
1 1
B = / (d*W(x)/d*5)Wi(X)dx, Bl = / (d* W (%) /d*2) W (%) dx,
0 0
1
B = / (—47%) sin’(2nx)dx = —2n1°.
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